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Abstract 

The biproportional RAS technique has become one of the most important tools to update, 

regionalize or balance input-output tables. In this note we rigorously prove that the 

estimation of the intermediate transactions matrix yields the same results as the 

estimation of the input coefficients matrix or the output coefficients matrix. We also 

show that this does not hold for any of the other updating procedures that have been 

commonly proposed as an alternative to RAS. 
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1. INTRODUCTION 

 

The RAS procedure is widely used for adjusting and estimating matrices. In its simplest 

form, the true “new” matrix Z(1) is estimated by )1(~Z  on the basis of the given “old” 

matrix Z(0), taking into account that the new row and column sums are given. The 

technique has become an indispensable tool in research that involves using data from 

input-output tables or social accounting matrices. It has been applied for a wide variety of 

purposes, such as updating, regionalizing or reconciling. Updating is often necessary, 

because input-output tables are generally only published once every five years, say. The 

matrix of intermediate transactions Z(0) in year t = 0 is then updated so as to match the 

margins for year t = 1. Regionalization involves the estimation of a regional matrix )1(~Z  

on the basis of the national matrix (or the matrix for another region) Z(0), given the 

object region’s margins. Reconciliation is applied when an initial estimate Z(0) is 

obtained (for example, from a partial survey or from industry experts) that does not 

satisfy the given margins. RAS is then adopted to reconcile or balance the initial estimate, 

by deriving a new matrix )1(~Z  that does satisfy the margins. 

 The RAS estimate is obtained by multiplying each row i of Z(0) by ir  and 

simultaneously each row j by js . In matrix notation this yields sZrZ ˆ)0(ˆ)1(~ = , where a 

“hat” is used to indicate a diagonal matrix. It appears that Deming and Stephan (1940) 

first used this biproportional technique that later became known as RAS. Leontief (1941) 

suggested a similar pair of influences (on rows and columns) to account jointly for 

coefficient change. Stone and his colleagues at Cambridge (Stone and Brown, 1962) 

apparently were unaware of this work when they proposed the same approach in 1962 

(Bacharach, 1970, p. 4; see also Lahr and de Mesnard, 2004). The Cambridge work 

seems to have concentrated on operating on a base year matrix A(0) of input coefficients, 

even though Bacharach (1970, p. 20) writes that the ultimate interest was in a target year 

transactions matrix. 

 In this note we address the question whether updating a transactions matrix yields 

a different result than updating the corresponding coefficients matrix. Many publications 

include language such as “... RAS adjustment of input-output coefficients” in the title, 
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perhaps implying (incorrectly) that the procedure is appropriate exclusively for 

coefficients matrices. (For example, Hewings, 1985, and Miller and Blair, 1985, discuss 

the RAS procedure exclusively in terms of coefficients.) The question also arises 

frequently at conferences and workshops, either explicitly or implicitly (i.e., researchers 

reporting the numerical equivalence in empirical examples). We prove that updating (or 

regionalizing) a transactions matrix yields the same result as updating (or regionalizing) 

the corresponding coefficients matrix. 

 It should be mentioned that in some cases it might be argued that it seems more 

natural to update the coefficients rather than the transactions, while the opposite might 

apply to other cases. For example, taking the foundations of production theory as a 

starting-point for the input-output model, it seems natural to focus on the coefficients. 

From a pure accounting point of view, however, it seems more natural to update the 

transactions. RAS procedures have also been applied widely to demographic issues. For 

example, if the focus is on transition probabilities one would choose to update the 

coefficients, whereas a focus on transportation flows between origin and destination calls 

for updating the “transactions”. We would like to emphasize that the purpose of this note 

is not to advocate the use of one over the other, just that one can safely use either because 

the results are the same.  

 

 

2. FORMAL STATEMENT OF THE PROBLEM 

 

We address the issue in the updating context. Consider an input-output table in year t = 0. 

The intermediate deliveries or transactions between the industries are given by the matrix 

Z(0), the final demands by the (column) vector f(0) and the gross outputs by the vector 

x(0). Using e for the summation vector consisting of ones, the first set of accounting 

equations yield )0()0()0( xfeZ =+ . The row sums of the transactions matrix are denoted 

by )0()0()0()0( fxeZu −== . Let the row vector of primary inputs (value added and 

imports) be denoted by )0( ′m , where a prime is used to indicate transposition. The 

second set of accounting equations then yields )0()0()0( ′=′+′ xmZe . The column sums 
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of the transactions matrix are denoted by )0()0()0()0( ′−′=′=′ mxZev . Similar 

expressions hold for year t = 1. 

 RAS-updating the transactions matrix Z(0) yields ZZ~ , which satisfies the 

following three conditions. 

 

 ˆ ˆ(0)Z Z Z=Z r Z s�         (1a) 

 (1)Z =Z e u�          (1b) 

    (1)Z′ ′=e Z v�          (1c) 

 

with 0)1( >iu  and 0)1( >iv  for all i. Next we will introduce the approach for the input 

coefficients, which for t = 0 are defined as )0(/)0()0( jijij xza =  or 1)0(ˆ)0()0( −= xZA . 

Substituting )0(ˆ)0()0( xAZ =  into the two sets of accounting equations yields 

)0()0()0()0( xfxA =+  and )0()0()0(ˆ)0( ′=′+′ xmxAe . Equivalently, 

)0()0()0()0()0( xAfxu =−=  and )0(ˆ)0()0()0()0( xAemxv ′=′−′=′  or 

)0()0(ˆ)0( 1 Aexv ′=′ − . Again, similar expressions hold for year t = 1. RAS-updating the 

coefficients matrix A(0) yields AA~ , which satisfies the following three conditions. 

 

ˆ ˆ(0)A A A=A r A s�         (2a) 

 (1) (1)A =A x u�          (2b) 

 1)1(ˆ)1(
~ −′=′ xvAe A         (2c) 

 

 In principle, there are now two ways of obtaining an estimate for the transactions 

matrix in year 1. First, ZZ~  from (1) and, second, transforming the estimate AA~  from (2) 

into a transactions matrix. That is, we define )1(ˆ~~ xAZ AA ≡ . In the same fashion, if we are 

interested in the coefficients matrix, the two estimates are given by AA~  directly from (2) 

and 1)1(ˆ~~ −≡ xZA ZZ  by applying (1) first. The issue is whether ZA ZZ ~~ =  or, equivalently, 

whether ZA AA ~~ = ? 
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 Several recent articles and interpretations of those articles appears to have raised 

the question of whether or not one obtains different results by using RAS on coefficients 

or transactions in the sense of suggesting that ZA AA ~~ ≠  or ZA ZZ ~~ ≠ . Okuyama et al. 

(2002) wrote: “Because the adjustment process ... operates on A matrices, the adjustment 

process is conservative, making only the minimally necessary adjustments to ensure 

agreement with the vectors u(1) and v(1).” (p. 364, changed notation). (Virtually identical 

language can be found in Hewings, 1986, p. 52, describing RAS in the context of 

generating a regional from a national input-output coefficient matrix.) Citing the 

quotation from Okuyama et al. (2002), Jackson and Murray (2004) wrote: “One might 

reasonably ask why, given the available data, one does not update the matrix of 

intermediate transactions directly, and then derive the associated new coefficients 

matrix.” (p. 137). Finally, Oosterhaven (2005) observed: “JM [Jackson and Murray], 

following Okuyama et al. (2002), suggest that RAS defined on coefficients produces a 

different outcome than RAS defined on transactions. This suggestion is incorrect. A 

careful inspection of JM’s own description of RAS in terms of coefficients ... simply 

reveals its mathematical equivalence with RAS in terms of transactions.” (p. 300, 

footnote 1). 

 Whether in fact Okuyama et al. (2002) intended this interpretation, it is not 

correct, as Oosterhaven suggests. And whether or not simple inspection of the procedure 

as described in Jackson and Murray is sufficient to make the case convincingly is 

debatable. In the next section, we give a rigorous proof for ZA ZZ ~~ =  and, hence, 

ZA AA ~~ = . 

 

 

3. THE PROOF 

 

The proof is based on the fact that in procedure (1), the outcome ZZ�  is unique (see 

Bacharach, 1970, pp. 47-9). Now consider equations (2). In (2a), post-multiply both sides 

by )1(x̂  and write 1)0(ˆ)0()0( −= xZA . Also in (2c), post-multiply both sides by )1(x̂ . 

Then equations (2) change into 
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 1ˆ ˆˆ ˆ ˆ(1) (0) (0) (1)A A A−=A x r Z x s x�        (3a) 

 ˆ (1) (1)A =A x e u�                                                                        (3b) 

 ˆ (1) (1)A′ ′=e A x v�         (3c) 

 

Using the definition )1(ˆ~~ xAZ AA ≡ , equations (3) then become 

 

 ˆˆ (0)A A=Z r Z s� �          (4a) 

 (1)A =Z e u�          (4b) 

 (1)A′ ′=e Z v�          (4c) 

 

with the diagonal matrix Asxxs ˆ)0(ˆ)1(ˆ~̂ 1−≡ . 

 Note that the sets of equations in (1) and (4) are equivalent. That is, both sets 

express that we are searching for a matrix Z~  that satisfies certain requirements (i.e., a 

biproportional relationship to Z(0) and given row and column sums). Note also that there 

is only one matrix that satisfies these requirements, because the updated matrix as the 

solution to (1) is unique. Hence, the outcomes of (1) and (4) must be the same, i.e., 

ZA ZZ ~~ = . Postmultiplying both sides by 1)1(ˆ −x  yields 11 )1(ˆ~)1(ˆ~ −− = xZxZ ZA . Using the 

definitions )1(ˆ~~ xAZ AA ≡  and 1)1(ˆ~~ −≡ xZA ZZ  immediately implies ZA AA ~~ = . In 

conclusion, it does not matter whether procedure (1) or procedure (2) is applied, they 

yield the same transactions matrix ( ZA ZZ ~~ = ) and the same coefficients matrix 

( ZA AA ~~ = ). 

 It should be stressed that the equivalence of the two updating procedures has a 

much wider validity than just for the forms in (1) and (2). Adding restrictions to (1) and 

(2) does not alter our finding, although it may alter the outcome.  

For example in (1), such restrictions may have the form of certain elements being 

known a priori (e.g., to be zero), or the sum of a set of elements may be known a priori, 

or inequalities for sets of elements may be imposed. The basis of our proof was the 
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uniqueness of the outcome to procedure (1). Adding a restriction implies that the outcome 

will either be unique or will not exist. The same applies to procedure (2). Hence, if both 

procedures have an outcome, each will be unique and the two will be equivalent (i.e., 

exhibit a one-to-one correspondence), simply because the solution also must satisfy (1) 

and (2). This means that our main conclusion is not affected.  

The outcome, however, might be affected. It may happen that (1), (2) or both have 

no solution. The possibility where only one of the two procedures has no solution can be 

prevented by appropriately “translating” the restrictions. That is, any restriction in (sets 

of) elements of ZZ~  in (1) should be translated according to 1)1(ˆ~~ −≡ xZA ZZ  so as to yield 

the restriction in (2). Vice versa, any restriction in (sets of) elements of AA~  in (2) should 

use )1(ˆ~~ xAZ AA ≡  to yield the restriction in (1). In conclusion, if the restrictions have 

been appropriately translated there are two possibilities. First, (1) and (2) have a unique 

solution and the solutions correspond to each other. Second, both (1) and (2) have no 

solution. 

 

 

4. MORE COEFFICIENTS 

 

The two sets of accounting equations, i.e., )0()0()0( xfeZ =+  and 

)0()0()0( ′=′+′ xmZe , are also the basis of the Ghosh (or supply-driven) input-output 

model, which can be interpreted as a price model (see Dietzenbacher, 1997). The output 

(or allocation) coefficients are defined as )0(/)0()0( iijij xzb = , or )0()0(ˆ)0( 1 ZxB −= , 

and they indicate the fraction of industry i’s output that is delivered to industry j. 

Substituting )0()0(ˆ)0( BxZ =  into the accounting equations yields 

)0()0()0()0(ˆ xfeBx =+  and )0()0()0()0( ′=′+′ xmBx . Equivalently, 

eBxfxu )0()0(ˆ)0()0()0( =−=  or )0()0(ˆ)0( 1uxeB −=  and 

)0()0()0()0()0( Bxmxv ′=′−′=′ . Again, similar expressions hold for year t = 1. RAS-

updating the coefficients matrix B(0) yields BB~ , which satisfies the following three 

conditions. 
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BBB sBrB ˆ)0(ˆ~ =         (5a) 

 )1()1(ˆ~ 1uxeB −=B         (5b) 

 )1(~)1( ′=′ vBx B         (5c) 

 

 The procedure in (5) yields an update for the matrix with output coefficients from 

which the transactions matrix may be obtained as BB BxZ ~)1(ˆ~ = . In the same way, from 

the updated transactions matrix from (1), the estimate for the output coefficients matrix 

yields ZZ ZxB ~)1(ˆ~ 1−= . Following the same steps as in the previous section it follows that 

ZB ZZ ~~ =  and BZ BB ~~ = .  

 

 

5. How Non-unique is the Set of r and s Vectors?  

 

It is well known that the vectors Zr  and Zs  in (1) are not unique. It is easily seen that 

also Z�r  and �Z /s  for any 0≠�  satisfy (1), if Zr  and Zs  do (see Bacharach, 1970, p. 

22; Lahr and de Mesnard, 2004, use the term hyperbolically homogeneous for this). 

However, this does not imply “the outcomes being unique only up to a scalar” as one of 

us stated (see van der Linden and Dietzenbacher, 2000, p. 2209). The following simple 

example suffices to show that this claim does not hold in general. 

 

 �
�

�
�
�

�
=

02

30
)0(Z , ��

�

	



�

�
=

8

15
)1(u , and ( )158)1( =′v  

 

The solution is then given by 

 

 �
�

�
�
�

�
=

08

150~ ZZ , ��
�

	



�

�
=

�

�Z

4
r , and ��

�

	



�

�
=

�

�Z

/5

/1
s  with 0, ≠�� . 
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Lahr and de Mesnard (2004, p. 119) write that “the elements within each of these two 

vectors [i.e., Zr  and Zs ] have constant relative values” and normalization is the solution 

to arrive at a unique result. Further they state: “… due to issues of degrees of freedom, 

normalization can be affected on either Zr  and Zs , not both!” (notation adapted). Their 

statements are made against the background of an example for which )0(Z  has only 

positive elements. In our example above, however, we have two degrees of freedom, and 

normalization of either Zr  or Zs  would not suffice. 

The claim that the vectors Zr  and Zs  are unique, apart from a single scalar 0≠� , 

does hold if the matrix )0(Z  satisfies certain conditions that are usually met when 

dealing with input-output tables. The requirements are that: (i) the matrix Z(0) is square; 

(ii) all elements on the man diagonal of Z(0) are positive, i.e., 0)0( >iiz  for all i; and (iii) 

the matrix Z(0) is not block diagonal (Bacharach, 1970, p 44, uses the terminology 

“disconnected” in this respect). The matrix Z(0) is block diagonal if – after a suitable 

permutation of its rows and columns – it can be written as follows. 

 

�
�

�
�
�

�

)0(0
0)0(

2

1

Z
Z

        (6) 

 

Next we prove that under these three conditions, Zr  and Zs  are unique, only up to 

a single scalar 0≠� . First, note that Zr  and Zs  are both strictly positive or strictly 

negative (see Bacharach, 1970, p. 45). Without loss of generality we take 0>Z
ir  and 

0>Z
is  for all i. Since there is at least one degree of freedom, normalize ),( ZZ sr  such 

that the first element of the r-vector is one. That is, define ZZZ r1/rr =  and ZZZ r ss ⋅= 1 . 

Clearly, ),( ZZ sr  satisfies (1) and suppose that also ),( ZZ qp  satisfies (1). We will show 

that ZZ pr =  and ZZ qs =  when conditions (i) – (iii) hold. From 

Z
iii

Z
i

Z
iii

Z
i

Z
ii qzpszrz )0()0(~ ==  with 0)0( >iiz  it follows that either we have that both 

Z
i

Z
i pr =  and Z

i
Z

i qs = , or we have that both Z
i

Z
i pr ≠  and Z

i
Z

i qs ≠ . Suppose that (after 

a suitable permutation of industry indexes) Z
i

Z
i pr =  and Z

i
Z

i qs =  for i = 1, ..., k, and that 
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Z
i

Z
i pr ≠  and Z

i
Z

i qs ≠  for i = k+1, ..., n. Then for all i = 1, ..., k and j = k+1, ..., n we 

have Z
jij

Z
i

Z
jij

Z
i

Z
ij qzpszrz )0()0(~ ==  or Z

jij
Z
jij qzsz )0()0( =  because Z

i
Z

i pr = . Since the 

vectors are strictly positive and since Z
j

Z
j qs ≠  for any j = k+1, ..., n, it must be true that 

0)0( =ijz . In the same fashion, for all i = k+1, ..., n and j = 1, ..., k, 

Z
jij

Z
i

Z
jij

Z
i

Z
ij qzpszrz )0()0(~ ==  implies )0()0( ij

Z
iij

Z
i zpzr =  because Z

j
Z
j qs = . Since the 

vectors are strictly positive and since Z
i

Z
i pr ≠  for any i = k+1, ..., n, it must be true that 

0)0( =ijz . Summarizing we have that 0)0( =ijz  for all i = 1, ..., k and j = k+1, ..., n and 

for i = k+1, ..., n and j = 1, ..., k. This implies that the matrix Z(0) is block diagonal which 

contradicts condition (iii). Consequently, either Z
i

Z
i pr =  and Z

i
Z

i qs =  holds for all i = 1, 

..., n, or Z
i

Z
i pr ≠  and Z

i
Z

i qs ≠  holds for all i. For i = 1 we find 

ZZZZZ qzpszrz 1111111111 )0()0(~ == , which implies ZZ qs 11 =  because 111 == ZZ pr  by 

construction and 0)0(11 >z  due to condition (ii). This completes the proof that Z
i

Z
i pr =  

and Z
i

Z
i qs =  holds for all i = 1, ..., n. 

 With respect to the plausibility of the conditions, input-output transactions 

matrices are always square, and the main diagonal is typically strictly positive. Only 

condition (iii) is sometimes violated in real world cases. It should be emphasized, 

however, that this causes no problem at all. Economies that exhibit a block diagonal 

structure can be separated into two sub-economies, each with its own transactions matrix. 

In this case the matrices )0(1Z  and )0(2Z are updated separately.  

 

 

6. THE RELATIONSHIP BETWEEN THE DIFFERENT SETS OF r AND s VECTORS 

 

In this section we assume that the matrix )0(Z  satisfies the conditions derived in the 

previous section. Because the vectors r and s in (1) and (4) are unique apart from a scalar 

0≠� , we can derive a simple relationship between Zr  and Zs  on the one hand and Ar  

and As  on the other hand. The only issue we have to deal with is the fact that uniqueness 
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holds up to a scalar multiple. This implies AZ �rr =  and �� AZ /)0(ˆ)1(ˆ/~ 1sxxss −== . 

Next, we normalize the vectors Zr  and Ar  such that their first element equals 1. That is, 
ZZZ r1/rr = . Similarly, we have AAA r1/rr = . 

 This normalization has three consequences. First, AZ �rr = , ZZZ r1/rr =  and 

AAA r1/rr =  imply )/( 11
ZAAZ rr�rr = . The normalization yields that 111 == AZ rr , by 

definition. Then, it immediately follows from )/( 11
ZAAZ rr�rr =  that AZ rr� 11 /= , and 

that AZ rr = . Second, because we have normalized the r-vectors, the s-vectors in (1) and 

(4) have also changed. That is, ZZZ r1/rr =  implies ZZZ r ss ⋅= 1 , and AAA r1/rr =  

implies ss ~~
1 ⋅= Ar . Using �Z /~ss =  then yields �rr AZZ /~)/( 11 ss = . Because AZ rr� 11 /= , 

we now have ss ~=Z . Third, normalizing Ar  also affects As  in (2), i.e., AAA r ss ⋅= 1 . 

From the definition Asxxs 1)0(ˆ)1(ˆ~ −≡  we get =⋅≡⋅= − )()0(ˆ)1(ˆ~~
1

1
1

AAA rr sxxss  

Asxx 1)0(ˆ)1(ˆ − . 

In conclusion, once the r-vectors from procedures (1) and (2) are normalized such 

that their first element equals 1, we have that the normalized r-vectors are equal to each 

other (i.e. AZ rr = ), while the corresponding s-vectors exhibit a simple relationship [i.e., 
AZ sxxs 1)0(ˆ)1(ˆ −= ]. 

The relationship between Zr  and Zs  in (1) on the one hand and Br  and Bs  in (5) 

on the other hand, can be obtained in the same fashion. We now normalize the s-vectors 

(instead of the r-vectors as we did above) such that their first element equals 1. In that 

case we have ZZZ s1/ss =��  and BBB s1/ss =�� . Then we find BZ ss ���� =  and for the 

corresponding r-vectors it follows that BZ rxxr ����
1)0(ˆ)1(ˆ −= . This can also be rewritten 

such that the r-vectors are normalized (as we did above). In that case we have 
ZZZ r1/rr =  again and BBB r1/rr = . Further BZ xx rxxr 1

11 )0(ˆ)1(ˆ)]1(/)0([ −=  and for the 

corresponding s-vectors we then obtain BZ xx ss )]0(/)1([ 11= . 

 

 

7. OTHER OBJECTIVE FUNCTIONS 
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It is well known that RAS yields the optimal solution for the following minimization 

problem in case of the transactions. 

 

 Minimize )]0(/~ln[~
ij

Z
ij

Z
ijji zzzΣΣ       (7) 

 subject to (1b), (1c), and 0~ ≥Z
ijz  

 

In case of coefficients we have 

 

 Minimize )]0(/~ln[~
ij

A
ij

A
ijji aaaΣΣ       (8) 

 subject to (2b), (2c), and 0~ ≥A
ija  

 

 In the literature, several other objective functions to minimize have been 

suggested (see, for example, Hewings and Janson, 1980; Lahr and de Mesnard, 2004; 

Jackson and Murray, 2004). In this section, we examine whether the property that it 

doesn’t matter whether transactions or coefficients are updated also holds for updating 

procedures with a different objective function. We find that this property does not hold 

for the updating procedures that have been proposed most commonly as an alternative to 

RAS. It turns out that a single, simple counterexample suffices.  

 Our starting point is the input-output table in year t = 0 as given in Table 1. It 

immediately follows that  

 

�
�

�
�
�

�
=

4030

2010
)0(Z  and �

�

�
�
�

�
=

4.06.0

2.02.0
)0(A  

 

 Insert Table 1 

 

The information available for the new input-output table in year t = 1 is given in Table 2. 

Hence, we have 
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 ��
�

	



�

�
=

110

10
)1(u , ��

�

	



�

�
=

95

25
)1(v , and ��

�

	



�

�
=

150

30
)1(x . 

 

 Insert Table 2 

 

Applying RAS yields the following results 

 

 �
�

�
�
�

�
==

5312.864688.23

4688.85312.1~~ AZ ZZ  and �
�

�
�
�

�
==

5769.07823.0

0565.00510.0~~ ZA AA  

 

 As alternatives for the RAS approach we have minimized the following six 

couples of objective functions (see Jackson and Murray, 2004; or Lahr and de Mesnard, 

2004). The constraints are the same as given in (7) and (8) for the transactions and 

coefficients, respectively. 

 

Function 1 (absolute differences): )0(~
ij

Z
ijji zz −ΣΣ  and )0(~

ij
A

ijji aa −ΣΣ  

Function 2 (weighted absolute differences): 

)0(~)0( ij
Z

ijijji zzz −ΣΣ  and )0(~)0( ij
A

ijijji aaa −ΣΣ  

Function 3 (normalized absolute differences):  

)0(/)0(~
ijij

Z
ijji zzz −ΣΣ  and )0(/)0(~

ijij
A

ijji aaa −ΣΣ  

Function 4 (squared differences): 2)]0(~[ ij
Z

ijji zz −ΣΣ  and 2)]0(~[ ij
A

ijji aa −ΣΣ  

Function 5 (weighted squared differences):  
2)]0(~)[0( ij

Z
ijijji zzz −ΣΣ  and 2)]0(~)[0( ij

A
ijijji aaa −ΣΣ  

Function 6 (normalized squared differences): 

)0(/)]0(~[ 2
ijij

Z
ijji zzz −ΣΣ  and )0(/)]0(~[ 2

ijij
A

ijji aaa −ΣΣ . 

 

Jackson and Murray (2004) provide linearized versions of functions 1-3 that are easy to 

solve with standard software for linear programming problems. The functions 4-6, 

however, cannot be linearized and involve constrained nonlinear optimization. Although 
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software is available, it should be emphasized that one may possibly find a local optimum 

instead of a global optimum. In the present, simple 2×2 example we have four unknown 

variables with three independent equality constraints, which leaves one degree of 

freedom. We can calculate the global optimum and do not need to use nonlinear 

optimization software. One possibility would be to write ZZ~  and AA~  as follows 

 

 �
�

�
�
�

�

+−
−

=
��

��Z

8525
10~Z  and �

�

�
�
�

�

+−
−

=
��

��A

150
85

30
25

150
10

5

5~A  

   

with 100 ≤≤ �  and with 150/100 ≤≤ � . Each of the functions 1-6 can then be 

expressed as a function of � (or �, respectively) and the minimum can be found 

algebraically. 

 When updating the transactions, we find for all six functions: 

 

 �
�

�
�
�

�
=

8525
100~ ZZ , so that �

�

�
�
�

�
=

5667.08333.0
0667.00~ ZA . 

 

 When updating the coefficients, we find the results in Table 3. For each of the 

functions 1-6 we have AZ ZZ ~~ ≠  and ZA AA ~~ ≠ . This example shows that for the six most 

commonly proposed alternative updating procedures proposed in the literature it does 

indeed make a difference whether transactions or coefficients are updated. Although in 

some specific cases one might have a preference for transactions or for coefficients, 

generally one is indifferent between the two. This implies, however, that one is 

confronted with two different answers to the same question, and there are usually no 

arguments on which a choice can be based. It thus seems that generating the same answer 

whether updating the transactions or the coefficients is a very attractive property that 

holds exclusively for RAS, at least within the set of commonly applied updating 

procedures. 

 

 Insert Table 3 
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8. CONCLUDING REMARKS 

 

In this note we have shown that the biproportional RAS technique yields the same results, 

regardless of whether we update the transactions, the input coefficients, or the output 

coefficients. That is, updating the transactions directly yields ZZ~  from equations (1). 

Updating the input coefficients yields AA~  from equations (2) and the transactions are 

then obtained as )1(ˆ~~ xAZ AA ≡ . Similarly, updating the output coefficients gives BB~  from 

equations (5) after which the transactions are obtained from BB BxZ ~)1(ˆ~ ≡ . In Sections 3 

and 4, these three estimates for the transactions matrix are shown to be exactly the same, 

i.e., BAZ ZZZ ~~~ == . Also we have found AZ AA ~~ =  (in Section 3) and BZ BB ~~ =  (in 

Section 4). Therefore, ZZBB AxZxZA ~
)1(ˆ~)1(ˆ~~ 11 ==≡ −− , so Z A B= =A A A� � � . Similarly, 

ZZAA BZxZxB ~~)1(ˆ~)1(ˆ~ 11 ==≡ −− , so Z A B= =B B B� � � . Table 4 summarizes our results. 

 

 Insert Table 4 

 

 Although the proof was given for the standard case, we have also indicated that 

the result is also valid when additional restrictions are included. Further, we have 

compared the RAS technique with six other updating procedures that have been 

frequently proposed in the literature. It turns out that RAS is the only approach that 

exhibits the property that updating the transactions yields the same answer as updating 

the coefficients. This property is very attractive in practical work, because usually there 

are no reasons to favor one over the other. Within the set of commonly used updating 

procedures this property is thus a distinctive feature of RAS.  

 As a final remark, it should—for the sake of completeness—be mentioned that the 

direct estimation of the transactions matrix (i.e., by means of  ZZ~ ) requires less 

exogenous information than its indirect estimation (i.e., through AZ~  or BZ~ ). The direct 

estimation of Z(1) only requires the row and column sums u(1) and v(1). The indirect 

estimation additionally requires the vector x(1), or equivalently f(1) or m(1), because x(1) 
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= u(1) + f(1) and x(1) = v(1) + m(1). The estimation of the coefficients matrices requires 

the same information in each of the three procedures, i.e., u(1), v(1) and x(1).  
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  TABLE 1: Transactions table in year t = 0 
 Industries Subtotal Final Total 
 1 2  demand  
Industry 1 10 20 30 20 50 
Industry 2 30 40 70 30 100 
Subtotal 40 60 100 50 150 
Primary inputs 10 40 50 -- 50 
Total 50 100 150 50  
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  TABLE 2: Transactions table in year t = 1 
 Industries Subtotal Final Total 
 1 2  demand  
Industry 1   10 20 30 
Industry 2   110 40 150 
Subtotal 25 95 120 60 180 
Primary inputs 5 55 60 -- 60 
Total 30 150 180 60  
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TABLE 3: Results from updating the coefficients 
Function AA~  AZ~  

1 
0.2000 0.0267
0.6333 0.6067
� �
� �
� �

 �
�

�
�
�

�

9119
46

 

2 
0.2333 0.2000
0.6000 0.6133
� �
� �
� �

 �
�

�
�
�

�

9218
37

 

3 
0.2000 0.0267
0.6333 0.6067
� �
� �
� �

 �
�

�
�
�

�

9119
46

 

4 
0.1795 0.0308
0.6538 0.6026
� �
� �
� �

 
5.3846 4.6154

19.6154 90.3846
� �
� �
� �

 

5 
0.1958 0.0275
0.6375 0.6058
� �
� �
� �

 
5.8738 4.1262

19.1262 90.8738
� �
� �
� �

 

6 
0.1683 0.0330
0.6651 0.6003
� �
� �
� �

 
5.0478 4.9522

19.9522 90.0478
� �
� �
� �
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TABLE 4: Summary of findings 

Start )0(Z  )0(A  )0(B  
Biproportional adjustment RZS RAS RBS 
Initial result ZZ~  AA~  BB~  

Initial result + derived results 
 
 

ZZ~  
1)1(ˆ~~ −≡ xZA ZZ  

ZZ ZxB ~)1(ˆ~ 1−≡  

AA~  
)1(ˆ~~ xAZ AA ≡  

)1(ˆ~
)1(ˆ~)1(ˆ~ 11 xAxZxB AAA −− =≡  

BB~  
BB BxZ ~)1(ˆ~ ≡  

11 )1(ˆ~)1(ˆ)1(ˆ~~ −− =≡ xBxxZA BBB  
 
 


